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Consideration is given to a numerical determination of a two-dimensional unsteady viscous flow with
the free surface in a stationarily rotating horizontal cylinder in which heat-exchange processes are
carried out. The "marker-and-cell" method in a polar coordinate system is used. The features of mod-
eling of the wall-layer regime and the circulating flow regime that occur in rapid and slow rotation
of the cylinder, respectively, are discussed. Based on the given results of numerical calculations, the
influence of the Reynolds number on the character of flow is analyzed.

The problem of determination of a viscous flow with the free surface in a horizontal rotating cylinder
is of significant applied interest for liquid horizontal rotary systems in which heat-exchange processes are
carried out. The character of motion of a fluid governs the efficiency of realization of technological processes
by rotating heat pipes, drying vapor cylinders, centrifugal casting machines, and other devices. Furthermore,
the characteristics of the flow have an effect on the stability of the regimes of motion [1] and on the value
of the moment of resistance of the fluid to the rotation of the cylinder (antitorque moment) [2].

Steady flow in stationary rotation of the cylinder is characterized by two regimes of motion [1]. The
first regime in the form of an immobile wall quasi-annular layer occurs in rapid rotation of the cylinder. The
second is realized in the form of combined circulating motion with considerable relative velocities and defor-
mations of the free surface of a fluid and occurs in low-speed rotation.

The problem of determining the position of the free surface of a thin wall layer of the fluid in the
first regime of motion was numerically solved in [3] based on the boundary-layer theory and with experimen-
tal check. Numerical approaches to determination of the flow in the form of a wall layer that are based on
different methods are given in [4−7].

Because of the combined nature of the flow, the modeling of the second regime of motion is substan-
tially complicated as compared to the description of the first regime. The results of experimental and to some
extent theoretical investigations of the circulating regime of motion are given in [8−10]. Attempts at determin-
ing numerically the individual parameters of a circulating flow are presented in [11−13].

A characteristic feature of the problem in question is a complex geometry, large deformation of the
free boundary, and mobility of a solid wall. However, in [3−7, 11−13], the modeling of such a flow using the
existing simplified numerical methods fails to ensure the required accuracy. At the same time, rather wide
acceptance has been gained by one of the most efficient algorithms for solution of nonstationary problems of
flow with a complex shape of the free surface − the "marker-and-cell" (MAC) method [14]. The procedure
initially developed for a rectangular Cartesian coordinate system was subsequently extended to a cylindrical
system for the case of axial symmetry [15, 16]. The "marker-and-cell" method applied in polar coordinates
that correspond most closely to the geometry of the flow and boundaries is used in [17] for a numerical
solution of the two-dimensional nonstationary problem in question.
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The studied region of the circular cross section of a cylinder is covered with a polar grid of cells
(Fig. 1). The velocity components are determined at the boundaries of the cell, while the pressure is deter-
mined at the center. Then, using finite-difference expressions for solution of Navier−Stokes equations in a
conservative form in a polar coordinate system, we can obtain the following algorithm in dimensionless form:
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Fig. 1. Scheme of the computational grid.
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As the characteristic parameters we can adopt: R, length, ωR, linear rotational velocity of the cylin-
der, ρω2R2, pressure on the surface of a filled cylinder in quasi-rigid-body rotation of the fluid, and 1 ⁄ ω,
time of rotation of the cylinder by one radian.

The finite-difference approximation of the continuity equation has the form
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The substitution of the velocity components from Eqs. (1) and (3) makes it possible to represent (5)
in the form of a difference Poisson equation for pressure in polar coordinates:
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With account for (2) and (4), the right-hand side of Eq. (6) can be written in the form
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For the boundary conditions on the solid wall to be realized, the polar grid is supplemented with an
annular layer of fictitious cells located behind the boundary of the calculated region (Fig. 2). From the adhe-
sion condition on the solid wall we have

Uik+1 ⁄ 2 = 0 , (8)

Vik+1 ⁄ 2 = ωR = 1 . (9)

With account for (9), the expression for the tangential component of the velocity in a fictitious cell
has the form

Vik+1,j+1 ⁄ 2 = 2 − Vik,j+1 ⁄ 2 . (10)

Having written (5) for boundary and fictitious cells and adding these equations together with account
for (8) and (9), upon rearrangements we obtain the expression for the radial component of the velocity in a
fictitious cell:
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1 − ∆r

1 + ∆r
 .

(11)

Having used (1) and (2) for the wall surface with account for (8)−(11), we represent, upon rearrange-
ments, the expression for the pressure in a fictitious cell in the form
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The velocity components in surface cells adjacent to the free surface are found by extrapolation using
the velocities in neighboring filled cells. The value of the pressure at the center of a surface cell is deter-
mined by interpolation of the pressure in one of the neighboring filled cells and the zero pressure on the free
surface (Fig. 3) from the formulas
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Fig. 2. Layer of fictitious cells.
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Pi,j = Pi,j+1 
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In calculating the flow regimes, we set two variants of boundary conditions.
In the first case, it was assumed at the initial instant of time that ω0 = ∞ and the fluid is rotating

together with the cylinder as a rigid body and occupies the annular region in the cross section (Fig. 4a). Then
the initial conditions for the free surface and the values of the velocity and pressure fields for the region
occupied by the fluid become, in dimensionless form,

rs0 = 
R0

R
 ;   Ui,j B 0 ;   Vi,j = ri ,   Pi,j = 

ri
2 − rs0

2

2
 . (15)

In the second case, it was assumed that ω0 = 0 and the fluid is at rest and, in the cross section,
occupies the segment region in the lower part of the cavity (Fig. 4b). Then the analogous boundary condi-
tions will be represented as

rs0 = 
H − R

R sin ϕj
 ;   Ui,j = Vi,j B 0 ;   Pi,j = 

H − R
R

 − ri sin ϕj

Fr
 . (16)

Fig. 3. Interpolation of pressure in a surface cell.

Fig. 4. Initial conditions from infinitely rapid rotation (a) and from the
state of rest (b).
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The computational process upon setting the initial conditions (15) or (16) consisted of the time steps
and the cycles. The calculational cycle for a single time layer involved the following stages:

1) calculation of the pressure field from (6) with account for (7) and (1)−(4), and also from (12) and
(13) or (14);

2) calculation of the velocity field from (1)−(4), (10), and (11);
3) calculation of new coordinates of the markers upon movement and of a new position of the free

surface;
4) refinement of the velocity and pressure fields near the boundary;
5) passage to a new time layer and a new calculational cycle.
The stable numerical solution was ensured by an accurate determination of the pressure field with the

attainment of the convergence criterion assigned in advance. In realization of the method, most of the com-
puter time was consumed by this calculation. The Poisson equation for pressure was solved by the
Gauss−Seidel iteration method with successive overrelaxation. The optimum value of the relaxation parameter
was determined experimentally and was equal to 1.5−1.8.

In calculating the regime of flow in the form of a wall layer, the initial conditions (15) were used.
Figure 5a shows successive patterns of development of this regime with the degree of filling of the cylinder
κ = 0.5 for four instants of time and diagrams of, respectively, the relative tangential Vrel = V − 1 and abso-
lute radial U velocity and the pressure P for the last pattern (in the case of coincidence of the diagram’s
ordinate with the direction of rotation ,its value is positive). The value of the maximum ordinate was 0.0493
for the Vrel diagram, 0.0196 for the U diagram, and 0.373 for the P diagram.

Fig. 5. Calculation of the flow with Re = 133,000, Fr = 4.24, and κ =
0.5 for t = 0, 10.1, 20.2, and 30.3: a) patterns of the wall-layer regime
and the Vrel, U, and P diagrams for t = 30.3; b) patterns of the circulat-
ing regime.
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The diagrams of the velocity components in Fig. 5a demonstrate the acceleration of the descending
part of the annular cross section of the layer and the retardation of the ascending part. The flow patterns
show a marked variable wall thickness of the layer that varies in the process of development of the flow.

As the rotational velocity decreases to a value lower than the limiting one for which the wall-layer
regime changes to a circulating regime during the retardation of the cylinder [1], the convergence of the it-
eration computational process decreased sharply. Recording of the manifestation of this instability was used
for a numerical determination of the value of the indicated lower limiting velocity in changeover of the re-
gimes.

The complicated character of the circulating regime of flow as compared to the wall-layer regime
motivates the necessity of improving the accuracy of determination of the velocity components and the pres-
sure on the free surface for ensuring the stability of the calculational scheme [18]. In order to calculate such
a regime, we can also use conditions (15), assuming that the rotation of the cylinder is slow as compared to
rapid relative motion of the fluid. Figure 5b shows the patterns of development of the regime under these
conditions for parameters of the flow that correspond to those of Fig. 5a. However, such initial conditions
ensure the stability of the solution only when the initial wall-layer regime in the case of a rotational velocity
no lower than the limiting one exists. Furthermore, despite the relative simplicity, these conditions introduce
specific distortions into the position of the free surface.

For a more accurate calculation of the circulating regime we used conditions (16). Figure 6 I shows
the patterns of development of the regime using similar conditions with large Reynolds numbers for three
degrees of filling of the cylinder. The value of the maximum ordinate for the last pattern was 1.14 for the
Vrel diagram, 0.02 for the U diagram, and 0.0909 for the P diagram. Figure 6 II gives the pattern of devel-
opment of such a regime with small Re for flow parameters that correspond to the parameters of Fig. 6 I.
For the last pattern, the value of the maximum ordinate was 0.327 for the Vrel diagram, 0.0262 for U, and
0.131 for P.

Fig. 6. Calculation of the circulating regime of flow with Re = 225,000
(I), Re = 1125 (II), and Fr = 3.06 for t = 0, 0.57, 1.13, and 1.17: the
patterns with κ = 0.3 (a), κ = 0.15 (b), and κ = 0.05 (c) and the
Vrel, U, and P diagrams (d) with κ = 0.05 for t = 1.17.
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According to the flow patterns in Fig. 6 I, practically the entire fluid in weak interaction with the
wall of the cylinder, even for a low degree of its filling, is found in the lower part of the cavity with a nearly
horizontal free surface; the fluid slips past the cylinder, and just its thin layer adheres to the ascending part
of the wall. According to the patterns in Fig. 6 II, in strong interaction with the cylinder, the bulk of the fluid
executes an intense circulating motion with the formation of a vortex roller on the descending part of the wall
and a meniscus with a considerable adherent layer on the ascending part. When the degree of filling is low
the fluid in the cross section becomes drop-shaped, fails to slip past the wall (due to the strong adhesion),
and spreads over it.

Consequently, use of the initial conditions (16) instead of conditions (15) improves the accuracy of
determination of the position of the free surface in circulating flow. The velocity range of solution is also
extended, since the convergence of a computational process decreases substantially only when the rotational
velocity increases to the upper limiting value for which the circulating regime changes to a wall-layer regime
in the acceleration of the cylinder [1]. Recording of such instability was also used for a numerical determi-
nation of the value of the upper limiting rotational velocity of the cylinder.

In solving the two problems of determination of the flow regimes, we carried out control calculations
that showed a good approximational convergence and algorithmic universality of the method. With the aim of
monitoring the computations, we also checked the fulfillment of the condition of conservation of mass. The
error was insignificant.

Thus, the "marker-and-cell" method employed in polar coordinates is applicable to modeling the en-
tire class of the considered flows with the free surface. The procedure makes it possible to carry out a quali-
tative numerical analysis of the character and boundaries of changeover of combined regimes of flow in a
horizontal rotating cylinder and based on this to predict with a sufficient degree of reliability the technologi-
cal parameters of liquid horizontal drum heat-exchange systems.

NOTATION

r and ϕ, radial and angular coordinates; U and V, radial and tangential components of the velocity;
D, divergence of the velocity; P, pressure; t, time; ν, kinematic coefficient of viscosity; ρ, density; ∆r and
∆ϕ, sides of the annular sector of the polar grid’s cell; R, cylinder radius; ω, angular velocity of the cylinder;
g, gravitational acceleration; Re = ωR2 ⁄ ν, Reynolds number; Fr = ω2R ⁄ g, Froude number; ∆t, time step; n
and n + 1, number of the time cycle; G, F, and L, variables; rs and ϕs, coordinates of the points of intersec-
tion of the free boundary and the radial and arc segments that connect the centers of the surface cell and the
filled cell; ω0, angular velocity of the cylinder at the initial instant of time; R0, radius of the free surface of
the fluid in infinitely rapid rotation of the cylinder; rs0, radial coordinate of the free surface at the initial
instant of time; H, height of the segment layer of the fluid at rest; κ, degree of filling of the cylinder with
the fluid; Vrel, relative tangential velocity. Subscripts: i and j, radial and angular coordinates of the center of
the cell; k, radial coordinate of the cylinder wall; s, coordinate of the free surface; 0, value of the parameter
at the initial instant of time; rel, relative velocity.

REFERENCES

1. Yu. V. Naumenko, Inzh.-Fiz. Zh., 64, No. 5, 558−565 (1993).
2. Yu. V. Naumenko,  Inzh.-Fiz. Zh., 71, No. 4, 639−642 (1998).
3. J. A. Deiber and R. L. Cerro, Ind. Eng. Chem., Fundam., 15, No. 2, 102−110 (1976).
4. K. J. Ruschak and L. E. Scriven, J. Fluid Mech., 76, No. 1, 113−125 (1976).
5. F. M. Orr and L. E. Scriven, J. Fluid Mech., 84, No. 1, 145−165 (1998).
6. R. F. Gans, J. Fluid Mech., 82, No. 3, 415−427 (1977).

743



7. R. F. Gans, J. Fluid Mech., 93, No. 3, 529−548 (1979).
8. J. Gavish, R. S. Chadwick, and C. Gutfinger, Isr. J. Technol., 96, Nos. 5−6, 264−272 (1978).
9. Y. Suzuki and Y. Tanida, in: Proc. 3rd Asian Symp. Visual., Tokyo (1994), pp. 230−235.

10. K. A. Jackson, J. E. Finck, C. R. Bednarski, and L. R. Clifford, Amer. J. Phys., 64, No. 3, 277−282
(1996).

11. A. Haji-Sheikh, R. Lakshimanarayanan, D. Y. S. Lou, and P. J. Ryan, Trans. ASME, J. Fluids Eng.,
106, No. 3, 270−278 (1984).

12. S. A. Trusov, V. I. Lapitskii, V. V. Vachevskikh, and L. K. Filimonova, in: Rheology and Processes
and Apparatuses of Chemical Engineering  [in Russian], Volgograd (1989), pp. 71−77.

13. V. A. Yakutenok, Mat. Modelir., 4, No. 10, 62−70 (1992).
14. F. H. Harlow and J. E. Welch, Phys. Fluids, 8, No. 12, 2182−2189 (1965).
15. F. H. Harlow and J. P. Shannon, Science, 157, No. 3788, 547−550 (1967).
16. B. J. Daly, Phys. Fluids, 12, No. 7, 1340−1354 (1969).
17. Yu. V. Naumenko, Zh. Vychisl. Mat. Mat. Fiz., 39, No. 2, 294−299 (1999).
18. B. D. Nichols and C. W. Hirt, J. Comput. Phys., 8, No. 3, 434−448 (1971).

744


